欢迎访问广东教师资格证考试门户网站!本网站为广大考生提供最新的广东教师资格证考试动态
您现在的位置:广东教师资格考证网 > 面试真题 >  > 正文

广东初中数学教师资格证面试真题及答案(12.02)第三批

发布时间:2019-12-02 17:20 作者:黄老师 来源:广东教师资格考证网 阅读数: 分享到:
初中数学《平行四边形的判定》

一、考题回顾

广东教师资格证

二、考题解析

【教学过程】

(一)引入新课

提出问题:平行四边形的定义是什么?平行四边形有什么性质?我们可以说怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?

由此引出今天学习的内容是《平行四边形的判定》。

(二)探索新知

通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。

实验一:取两长两短的四根木条用小钉铰在一起,做成一个四边形,如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;

实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。

引导学生归纳得出结论:

两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形。

提问学生:你能根据平行四边形的定义证明它们吗?

引导学生以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明。明确平行四边形的判定定理与相应的性质定理互为逆定理。

提问学生:求证四边形ABCD是平行四边形,说一说有哪些证明方法?

预设:可以利用定义,或证明两组对边分别相等,或两组对角分别相等。

继续提问:思考两组对边分别平行或相等的四边形是平行四边形,如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?

学生活动:组织学生前后桌四人一组进行讨论,教师巡视指导。引导学生猜想一组对边平行且相等的四边形是平行四边形,并进行证明。

通过充分讨论和分享,结合学生的回答,教师明确:平行四边形判定的另一种方法,即一组对边平行且相等的四边形是平行四边形。

提问学生:现在你有多少种判定一个四边形是平行四边形的方法?

引导学生回顾平行四边形判定的四种方法。

(三)课堂练习

基础题:练习题1,引导学生利用平行四边形判定的四种方法进行证明。

提升题:练习题2,解决生活实际问题。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:本节课学习了平行四边形判定的四种方法。

课后梯度作业:必做题和选做题。

【板书设计】

广东教师资格证

【答辩题目解析】

1.平行四边形的判定定理都有哪些?

【参考答案】

两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。

2.为什么要学习平行四边形的判定?

【参考答案】

平行四边形的判定是对前面所学全等三角形和平行四边形性质的一个回顾和延伸,又是后续学习特殊的平行四边形的基础,同时它还进一步培养学生的简单的推理能力、图形迁移能力、观察能力、合情推理能力,使学生学会将平行四边形的问题转化为三角形的问题,渗透化归思想。

上一篇:广东初中数学教师资格证面试真题及答案(12.02)第二批

下一篇:没有了

评论:网友评论仅供网友表达个人看法,并不表明本站同意其观点或证实其描述!

说点什么吧
  • 全部评论(0
    还没有评论,快来抢沙发吧!

广东初中数学教师资格证面试真题及答案(12.02)第三批

广东初中数学教师资格证面试真题及答案(12.02)第三批

2019-12-02 17:20
初中数学《平行四边形的判定》

一、考题回顾

广东教师资格证

二、考题解析

【教学过程】

(一)引入新课

提出问题:平行四边形的定义是什么?平行四边形有什么性质?我们可以说怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?

由此引出今天学习的内容是《平行四边形的判定》。

(二)探索新知

通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。

实验一:取两长两短的四根木条用小钉铰在一起,做成一个四边形,如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;

实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。

引导学生归纳得出结论:

两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形。

提问学生:你能根据平行四边形的定义证明它们吗?

引导学生以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明。明确平行四边形的判定定理与相应的性质定理互为逆定理。

提问学生:求证四边形ABCD是平行四边形,说一说有哪些证明方法?

预设:可以利用定义,或证明两组对边分别相等,或两组对角分别相等。

继续提问:思考两组对边分别平行或相等的四边形是平行四边形,如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?

学生活动:组织学生前后桌四人一组进行讨论,教师巡视指导。引导学生猜想一组对边平行且相等的四边形是平行四边形,并进行证明。

通过充分讨论和分享,结合学生的回答,教师明确:平行四边形判定的另一种方法,即一组对边平行且相等的四边形是平行四边形。

提问学生:现在你有多少种判定一个四边形是平行四边形的方法?

引导学生回顾平行四边形判定的四种方法。

(三)课堂练习

基础题:练习题1,引导学生利用平行四边形判定的四种方法进行证明。

提升题:练习题2,解决生活实际问题。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:本节课学习了平行四边形判定的四种方法。

课后梯度作业:必做题和选做题。

【板书设计】

广东教师资格证

【答辩题目解析】

1.平行四边形的判定定理都有哪些?

【参考答案】

两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。

2.为什么要学习平行四边形的判定?

【参考答案】

平行四边形的判定是对前面所学全等三角形和平行四边形性质的一个回顾和延伸,又是后续学习特殊的平行四边形的基础,同时它还进一步培养学生的简单的推理能力、图形迁移能力、观察能力、合情推理能力,使学生学会将平行四边形的问题转化为三角形的问题,渗透化归思想。

在线咨询

400-811-9995